
Distributed computing over Internet using a peer to peer network

Semester project by Tiziano Mengotti
Supervised by Dr. Wesley Petersen and Dr. Peter Arbenz

20 September 2002

Abstract:

The main goal of the semester project is to design and implement a prototype for an application
which shares CPU-time of normal computers connected to the Internet.
To do this, the application connects to a peer to peer network and is able to share files with others.
In addition the application, from now on simply called the node (to emphasize the idea that the
application is a network’s node) is able to send, receive and perform some computational jobs.
Jobs travel through the peer to peer network disguised as a search string for files. They travel until
they find a node willing to execute them or until their short life terminates, limited by a counter
decremented every time the job is retransmitted.
Once the good-willing node finishes a job, it returns the result to sender. The sender collects
results the same way it does for files found on the network.
Jobs are described in polish notation, which can be interpreted as commands for a stack. "1 + 1"
becomes "1,1,+"; although at first look this system seems complicated, it frees the node from
some difficult issues like operator precedence and bracket management.
The application implements the commands for the computation in an elegant way, making it easy
to extend the set of basic computing functions the node knows about.
A plugin for computing the discrete logarithm in modulo arithmetic over large integers is
implemented in the framework as an example for a working extension.
The application and the ideas behind the scenes are documented, so that others can understand
how the system works, and eventually write plugins if they are interested. A discussion of the
system’s capability, details of its implementation, as well as possibilities for its extensions conclude
the report.

Frameworks for distributed computing

Centralized model against peer to peer model

Important distributed computing projects over the Internet, such as Seti@home [6] and the Cancer
Research project [7], use a centralized architecture, called “client – server” architecture: one well
known server distributes different chunks of data to all clients, while the clients get the data and
perform a computation on that data. In the centralized network there is one server, while all other
nodes are clients that work for the server. Clients connect only for the necessary time to download
the data. They then perform some kind of computation and return the result to sender, usually
many hours later.
The network’s shape is a star. The server lies at the star’s center and the rays connect all clients
to the server. If the server experiences a problem and goes down, the whole network doesn’t work
anymore.

We are interested in a different architecture, a so called “peer to peer network”. In a peer to peer
network (shortly abbreviated with P2P) all nodes are at the same time client and server. There is
no privileged node that can claim to be different from others. All nodes can send out data and all
have to work if requested by another node.
In addition, the nodes stay online while they perform computations without disconnecting. A thread
on the node keeps connections and forwards packets through the network. In the meanwhile,
other threads perform computations on chunks of data and return them to their initiator. Different
algorithms can be stored in plugins that extend the functionality of the node.
In the P2P model the topology is not limited to a star, the network can assume any possible
connected shape.

As you can see, the centralized model is a subset of the peer to peer model. Using a peer to peer
network it is still possible to perform a centralized computation.
Two practical advantages of the P2P model are “its lack of a single point of failure”, as stated in [9]
and the fact that P2P doesn’t require to configure and design networks. The network designs itself.
The price for that flexibility in P2P is mostly paid by reduced bandwidth; in other words lot of
packets are directed often on wrong ways and some of them are just to administrate the irregular
network. In an irregular topology nodes connect and disconnect in a chaotic fashion, so that
packets can be lost.

Se
rvCl

ie Cl
ie

Cl
ie

Cl
ie
nt

Cl
ie
nt

Cl
ie

Cl
ie

Client/Serv
er
Architecture

Peer to
peer
networkNo

de

No
de

No
de

No
de

No
de

No
de

No
de

The author believes that with the current technological developments, moving hardware towards
higher bandwidth and cheaper 24-hours connections (ADSL), and software with simple and
powerful improvements to the P2P model (like “random walkers” that could reduce traffic of two
orders of magnitude [1]), we will see the P2P model applied to distributed computing.

Node

A

A

A

AAn
incomin
g

… is
forwarded
through all
other
connections

What is the Gnutella Network?

In this chapter we explain how the Gnutella network works by showing an application implemented
using a Delphi [14,15] component (written by Cap’n Bry [11])
The Gnutella network is a peer to peer network built on top of the TCP / IP protocol with the goal
of sharing files of any type. Nodes willing to connect, randomly pick up other nodes from a list,
which is delivered by a special node called host catcher. Once the node has established some
connections to other online nodes (four or five), it tries to stay connected as long as possible: it will
attempt to replace connections, if the established ones break down. Over the connections the
nodes exchange packets.
Packets contain search strings for files and information for establishing connections correctly. In
this project, to these packets we also add commands for computations. Here, a packet carrying
these commands is called job.

The three principles of Gnutella:

1) The network has no privileged nodes, there is no fixed clients nor fixed server. Every node
in the network is server and client at the same time. This means every node is able to use
services from other nodes and has to offer services to other nodes

2) Packets are routed through the network
with the simplest mechanism possible. Once a packet reaches a node it is
immediately sent out over all its other connections. This mechanism of routing packets is
called ‘flooding’. The only guarantee the network mechanism provides, is that a packet sent
out from a node will reach every other node connected to the sender node.

3) To prevent the geometric growth of duplicated packets, two mechanisms are defined. First,
a packet carries a counter which is decremented every time the packet is forwarded again.
Once the counter becomes zero, the packet will be deleted. This counter is called TTL
(Time To Live) and prevents packets from travelling indefinitely. A consequence of the
counter is that a packet will only reach nodes in the so-called TTL-radius.
The second mechanism is the following: every host keeps a list of packets the host saw in
the last minutes. Every packet coming in will be checked with the list. If the packet is
already present, the new copy is thrown away. If not present, the packet is added to the list
and resent using the flooding mechanism. This will prevent packets from travelling in
circles. The measure wouldn’t be necessary in loop-free topologies (trees), because there
packets cannot replicate themselves. Of course, the Gnutella network is a complex graph
with a lot of loops.

4) The list of packets kept by a host is also used to route back answers to queries. Therefore,
answers to query packets follow the shortest path in the network and are not routed using
a flooding mechanism.

Details of the protocol are defined in [3]. History of Gnutella can be read in [5]. In [4] there is
strong criticism to the scalability of Gnutella from one of Napster’s [10] authors.

Nod

A

AAn
incomin
g

… is forwarded through
only one randomly
chosen connection and
not through all
connections as before

Random walkers

A further improvement to the Gnutella protocol is presented here and was implemented in our
application. The improvement reduces the necessary bandwidth for the peer to peer network.

The picture above illustrates the necessary change in the routing mechanism to implement
“random walkers”. Compare this picture with the previous one. In the previous picture, the
incoming packet is forwarded to all connections, except the one where the packet came in. In the
random walkers mechanism, we simply choose one connection at random (notice that the
connection could be the incoming connection, too). Now one packet doesn’t multiply itself every
time it is forwarded. The packet simply randomly “walks” over the peer to peer network, like a
drunk on a hard night. The drunk doesn’t clone itself at every crossroad of the city, and this is a
good news for the network bandwidth. Intituitively a sent packet doesn’t produce a flood of packets
that grow geometrically, but stays alone and alive until its Time To Live counter becomes 0.

The question is now how many walkers are necessary to reach a sufficient number of network’s
nodes, so that our network’s queries (e.g search for files or computational requests) return enough
results?
In “Search and Replication in Unstructured Peer-to-Peer Networks” [1] ([9] for a review), a joint
team at the Universities of California at Berkeley and Princeton propose showed through computer
simulation that to begin a network query, a number between 16 and 64 random walkers are
enough and suitable. However, the random walkers should check back with the requester before
walking to the next node (note that checking is not implemented yet in the presented framework).

The process involving random walkers can be observed in real life. Physicians often name it
diffusion. The diffusion process can be described by a partial differential equation (called heat
equation) and the solution is a bell curve that shows how the density of random walkers decreases
from the central point, where the diffusion process started [8].

Description of the virtual machine inside the node

Our application effects a virtual machine for interpreting computational commands. Once a
command is typed and the ‘Compute locally’ button is clicked or once an incoming job is caught
from network, the virtual machine interprets it. (See the screenshots section to get an idea)

As an example, let us look at the simple “1,3,add” command. The virtual machine reads
arguments each separated by a comma. If the argument is a number (like “1” and “3”), it is loaded
on the stack. If the argument is a command (like “add”), the virtual machine searches in all
dynamic link libraries in the directory plugins for a method called “add”. Then the virtual machine
calls that function, the argumets for the functions are popped and the result is pushed onto the
stack. Normally most of the functions just crunch some parameters and give one parameter back.
Look at another more complicated example:

Example: 3,1,add,7,mul

Here is the behaviour of the virtual machine, step by step
1. Stack: empty

String: 3,1,add,7,mul

2. Stack: 3
String: 1,add,7,mul
Here the number 3 is loaded on the stack

3. Stack: 3,1
String: add,7,mul
One is loaded on the stack, too

4. Stack: 4
String: 7,mul
The command add first pops the two parameters from the stack. Then it computes 3+1, the
sum of the two parameters. The result, 4, is pushed on the stack

5. Stack: 4,7
String: mul
7 is pushed on stack

6. Stack: 28
String: empty
4 and 7 are pooped. The final multiplication is computed and the result 28 is pushed. The
empty string signalises that we are finished.

Computation using interpreted strings is slow way. In fact the virtual machine is about 500 times
slower than compiled code. Why 500 times? Because about 500 assembler commands are used
to find out where the function with that command name lies in the plugins. The virtual machine is
more intended for small adjustments to the parameters. Big tasks should be done by plugins that
implement the whole algorithm. These algorithms are compiled in the dynamic link library. They
run maximum speed, the speed of machine compiled code.

A nice example is the following: compare the speed of:
“0,{rnd,sqr,rnd,sqr,add,1,less,add},1000000,rpt,1000000,dvd,4,mul”

with the speed of
“100000000,pi”.

Both commands do the same: they compute pi using the Monte Carlo method (described in
Appendix A). However, the first one leaves the whole computation to the virtual machine, while the
second one only uses the virtual machine to find the appropriate compiled code among the plugins
(in this case, the source code for the function pi is in greekpi.dll).

On a 1GHz Pentium III the first command takes about 40 seconds. The second command takes
about 8 seconds. However the second command uses a sample of 100’000’000 while the first only
one million. So, 40 seconds for 1’000’000 throws and 8 second for 100 millions throws shows that
if we rely on the virtual machine, we are 500 times slower.
Earlier versions of the application presented here were only 20 times slower when using the virtual
machine before the plugin mechanism was implemented.

Another limit of the virtual machine can be seen from the example: the virtual machine has a
sample limit of 1’000’000 because the command “rpt” recursively calls the procedure used in its
computation; every time a sample datum is executed more space is reserved in memory. Once the
memory stack is full, Out of Memory errors occur.

Implementing a new plugin in the application framework

As stated in the previous section, the virtual machine is not suitable for fast computations.
However our application offers a framework where plugins can be installed. The plugins are
compiled code; so there are no performance losses caused by the virtual machine, except the
initial overhead to search for requested functions among the plugins.

Physically, plugins are dynamic link libraries in the subdirectory /plugins of the application. They
are loaded when the application is created.
Dynamic link libraries are a collection of procedures and functions (methods in C-terminology). So
a plugin, as a collection of functions, can implement more than one command which can be
directly typed in as commands in the “Computing” page of the GPU window (GPU [13] is the name
for our application, see Appendix D for some screenshots); e.g the plugin basic.dll exports the
functions add, mul, sqrt and many more...

The source code of a plugin is split in two files. One is a main file specifying which functions have
to be exported (only these functions can be used from the main application GPU, all others stay
hidden). The other file contains the source code of the functions.

As example of the main file, here the main file basic.dpr, which is part of the plugin basic.dll:

library basic;

uses basicdll in 'basicdll.pas';

{$R *.RES}
exports add;
exports sub;

exports mul;
exports dvd;

exports sqrt;

{... nine other functions are exported here}

begin
end.

As we said, the main file specifies the functions to be exported. The file where the source code of
these functions is defined is specified in the “uses” clause. In the example the file for the plugin
basic is called basicdll, and is found in the same directory of basic.dpr with name basicdll.pas
Now take a closer look at the file basicdll.pas

unit basicdll;

interface

 uses CommonConst;

 {here we define the signature of the functions}
 function add(var stk : TStack):Boolean;stdcall;
 function sub(var stk : TStack):Boolean;stdcall;
 function mul(var stk : TStack):Boolean;stdcall;
 function dvd(var stk : TStack):Boolean;stdcall;

 function sqrt(var stk : TStack):Boolean;stdcall;
{here nine other functions are defined}

implementation

{here the source code for the functions is declared}
...

Between the keywords interface and implementation, we define the signature of the functions. To
avoid nasty runtime errors, it is important that exported functions use this signature:

function tobeexported(var stk : TStack) : Boolean;stdcall;

The function name in this case is “tobeexported”. A strange parameter of the type Tstack is
passed to the function (this is explained below) and the function result is a boolean type (true or
false). By definition, a function returns true if the computation could be done without any problems,
and false is something went wrong: for example if the parameter Tstack was incorrect.
The keyword “stdcall;” means the function is a “standard call” and informs Delphi [14,15] that the
function is a function in a library, which will be loaded at runtime. For these functions the address
cannot be known a priori in the linking process.

Here a translation in C of the signature:

bool tobeexported(Tstack stk);

Here are some important things about the strange parameter of type Tstack:
Parameters are passed to the function with a record of type Tstack (a record is a struct in C-
terminology). The record fields of TStack are defined in the file commonconst.pas. Here the record
definition, as it is in commonconst.pas

 type TStack = Record
 Stack : Array [1..MAXSTACK] of Extended;
 StIdx : LongInt; {Index on Stack where Operations take place}
 StIdx cannot be more than MAXSTACK}
 end;

Translated to C, this would look like

 struct stack {
 float Stack[];
 int StIdx;
 } TStack

The field Stack is an array of floating point numbers, with size MAXSTACK, which is a constant
defined in commonconst.pas.
The field StIdx is actual index in the array Stack, and can be viewed as an array pointer.

Imagine now that someone calls the function add, using the GPU command
3,7,add.

The main GPU application will first create and fill a record of type Tstack like this:

Parameters, record of type Tstack, containomg the following:
 Stack = [3,7, not defined, not defined, not defined, not defined, ...]
 StIdx = 2

Note that the StIdx points always to the last defined value in the array and that arrays in Delphi
begin with index 1 and not 0, unlike C.
GPU will search in all plugins in the /plugins directory for a function called add.
GPU will find it in the dynamic link library basic.dll. GPU will call add and pass the record
Parameters by reference (in Delphi values passed by reference are marked by the keyword var).
By reference (or “call by address”) means that the function works with the same record as the
main application, changes are visible for both. This is the opposite behaviour to “call by value”:
there the function works with a copy of the record, and changes will be lost when the function
returns.

Let us take a closer look at the internal details of the simple function add.
The definition is still in the file basicdll.pas and follows the keyword implementation.

function add(var stk : TStack):Boolean;stdcall;
 var
 Idx : Integer;
 begin
 Result := False;

 Idx := stk.StIdx; {this should make the code more readable}

 {check if enough parameters}
 if Idx < 2 then Exit;

 Stk.Stack[Idx-1] := Stk.Stack[Idx-1] + Stk.Stack[Idx];

 {never forget to set the StIdx right at the end}
 stk.StIdx := Idx-1;
 Result := True;
 end;

here we comment line by line what happens

1) Result := False;
Here we set the boolean function result as False. If something goes wrong, we will not reach the
end of the function and the result will stay False. This will display an error in the GPU computing
window.

2) Idx := stk.StIdx;
For better readability of the code we load the stack pointer in a local variable (which is 2 in the
example)

3) if Idx < 2 then Exit;
Here we check that there are enough parameters. We can only add two numbers, the function
needs at least two parameters. Notice that if there are not enough parameters, we just exit the
function, and the result of the function stays false.

4) Stk.Stack[Idx-1] := Stk.Stack[Idx-1] + Stk.Stack[Idx];
Finally we sum up the values in the array and we store the result at the position Idx-1
The value at the position Idx is not used anymore.
Notice also that eventually there may be exceptions, e.g. in the rare case that numbers are too
big. Again, we won’t reach the end of the function and the result stays False.

5) stk.StIdx := Idx-1;
 Result := True;
 end;
These are the clean-up steps, we move down the stack pointer, and we set the result of the
function to true, because all is well which ends well.

The control goes now back to GPU and the record Parameters looks like this:
Parameters, contains at the end following:
 Stack = [10,7, not defined, not defined, not defined, not defined, ...]
 StIdx = 1

It is important to know that the second parameter (7) was not erased. It is still there, but it is not
used anymore, because by definition functions accept parameters only between 1 and StIdx. We
“erased” the second parameter at step 5) when we decreased StIdx by one.

GPU displays then all values between 1 and StIdx in the computing window, separated by comma.

Another example of a simple plugin is in Appendix A. Appendix B describes the complex plugin for
computing the discrete logarithm.

Conclusion

Our hope is that people interested in science will run an application like the one presented here.
The difference between this framework and frameworks with centralized distributed computing
(like the Seti@home project is [6]) is that anyone can send out jobs and develop extensions for the
application. At the beginning, people should learn confidence with the machine by sending out
simple jobs. Other machines will respond and the psychological impact could be the following:
people running the application aren’t only part of a project for a supercomputer, they can control
the supercomputer, too. Developing extensions for applications like this could become an exciting
sport, perhaps as exciting as virus development is but with more positive consequences.

The application source code and the executables [13] can be downloaded from the Internet
address http://sourceforge.net/projects/gpu. The project is now published as Open Source and a
team of people of different nationalities is looking forward to improve the code, as well as
documentation.

APPENDIX A

A way for computing Pi
description of the plugin greekpi.dll

Greekpi is a plugin which computes Pi with the Monte Carlo method. Although not very useful in
real life (206 billion of digits of Pi are known [12]), it is a good academic example. The idea is to
generate two random numbers between 0 and 1, which are considered as coordinates in the
plane. Let’s call these two coordinates x and y. Now the plugin checks if the point (x,y) lies within a
circle of radius 1. To do this square x and y, sum them together and check if the result is less than
one.

If the point (x,y) lies in the circle, increment the counter Sum by one.
By repeating this operation many times, if the points are uniformly distributed, we can build the
quotient between the counter Sum and the number of throws (in the plugin the number of throws is
passed as parameter and stored in the variable) and we get the percentage of throws falling within
the upper right quadrant of the unit circle. Recall that the points can only be thrown between the
square with side 1 and area 1. The percentage becomes also the area of the quarter of the circle
with radius 1. By multiplying the percentage by 4 we get the complete area of the circle, which is
Pi.

Here the source code for the plugin Pi.

function pi(var stk : TStack):Boolean;stdcall;
 var
 Idx : Integer;
 Count,Sum,i : Longint;

 begin
 Result := False;
 Idx := stk.StIdx; {this should speed up and also made the code more readable}
 {check if enough parameters
 first parameter is number of throws for computing Pi}
 if Idx < 1 then Exit;
 Count := Trunc(Stk.Stack[Idx]);
 if Count > 625000000 then Exit; {parameter is too big and we get an overflow}

 Sum := 0;
 for i:=1 to Count do
 begin

Point lies
outside of
circle with
radius one.
There are no
changes in the
counter Sum.

Randomly
thrown point lies
inside the circle.
Counter Sum is
incremented
here.

 if (Sqr(Random)+Sqr(Random)) < 1 then
 Inc(Sum);
 end;

 {gives result back}
 Stk.Stack[Idx]:=4* Sum / Count;
 Result := True;
 end;

APPENDIX B

The discrete logarithm problem
description of the plugin crypto.dll

One-way functions are functions that are very easy to compute in one direction, but very difficult to
invert. One of the simplest functions with that one-way property is the power modulo a number.
2 to the power of 5 is 32. Modulo is the simple operation that gives the remainder of a division
between two numbers, e.g. 32 modulo 19 is 13.
2 to the power of 5 modulo 19 is 13.
2^5 mod 19 = 13

Easy way round

There are two ways offered by GPU to compute the power modulo a number.
Switch to the Computing page and type ‘2,5,19,powmod’, then click on ‘Compute locally’ and see if
the result matches. ‘powmod’ is implemented in this way: a loop multiplying 2 for 5 times with
itself; each time the modulo operation is performed. The source code of ‘powmod’ can be found in
basicdll.pas.

It turns out that there is a more efficient way to compute this special power. It uses the property
that (2^3)^4 = 2^(3*4) = 2^12 . The previous plugin used n multiplications, if it were computing 2^n
mod x. The plugin implemented in cryptodll.pas uses an algorithm called ‘Square and multiply’. For
the same task with n as power, only about logarithm with base 2 of n loops are needed. Try the
following task ‘2,5,19,squareandmul’ in GPU. Refer to cryptodll.pas to see how the Square and
Multiply algorithm works in detail.

To compare the two plugins, measure how long it takes ‘11,60000000,5999,squareandmul’
compared to ‘11,60000000,5999,powmod’.
Another weakness of ‘powmod’, is that it can’t handle big numbers. Big jobs may result in different
results, especially if you choosed a modulo that is higher than 32 bits.

Difficult way round

Now let’s take it the other way round. If someone asks you the following: how many times should I
multiply 2 if I want to get 13 modulo 19? Ok, you know from the previous example, that the right
answer is 5.

If you forgot it, you could just try to build a table and see where the number 13 comes up in the
right column. But, good look if the modulus is 70383776563201.
For a computer, the approach of building such a table is too expensive in time and memory space.
Here the one-way property shows itself clearly.

For this reason, GPU implements an algorithm that tries to solve the problem using the baby step /
giant step algorithm. This algorithm uses only a table with a size of the square root of n, where n is
the modulus. For further information, refer to the source code in the plugin cryptodll.pas. The
function name is ‘discretelog’.

Let us ask GPU to perform the computation: this is the packet sent out and it has a lot of
parameters, explained later.

Type ‘13,2,19,4,0,discretelog’. Again, click on the ‘Compute locally’ and see if the result is 5. The
result 5 is called the discrete logarithm of 13.
You encountered the first three parameters above (’13,2,19’). In cryptography 13 is the most
important parameter. Normally the other parameters are given from cryptographic algorithms, and
what we search for is only the discrete logarithm. 2 is sometimes called the generator of the cyclic
group, or in other texts, the primitive root, because it generates the integers between 1 and 18, if
we exponentiate 2 with numbers between 1 and 18 modulo 19. Note that if we compute 2^19 mod
19, we get again 2, which is the same as we compute 2^1. This is the reason why this particular
mathematical structure is called cyclic group.
Elements of the group are the ones between 1 and 18, and the order they come in the structure is
given by the operation 2^x mod 19 performed over the numbers between 1 and 18.

The following table should clarify the situation (the table can be computed using squareandmul or
powmod):

Operation (exponent is in bold) Result, an element of the group
2^1 mod 19 2
2^ 2 mod 19 4
2^ 3 mod 19 8
2^ 4 mod 19 16
2^ 5 mod 19 13
2^ 6 mod 19 7
2^ 7 mod 19 14
2^ 8 mod 19 9
2^ 9 mod 19 18
2^ 10 mod 19 17
2^ 11 mod 19 15
2^ 12 mod 19 11
2^ 13 mod 19 3
2^ 14 mod 19 6
2^ 15 mod 19 12
2^ 16 mod 19 5
2^ 17 mod 19 10
2^ 18 mod 19 1
2^ 19 mod 19 2
2^ 20 mod 19 4
... ...

Better said, the result 5 is the discrete logarithm of 13 with primitive root 2 over the cyclic group
with modulo 19 and multiplication as operator.

The order of the group is 18, because there are 18 different elements that can be generated.
Please note in decyphering that it is difficult to choose a primitive root, and size of the group in
order to get them to generate a whole group. There are some constraints for the modulo operator
(19). The modulo number has to be relative prime to all other elements in the group. E.g if you
choose 2 as primitive root, and 16 as modulo operator, you won’t get all numbers between 1 and
15 to be generated. The table here explains the situation

2^1 mod 16 2
2^2 mod 16 4
2^3 mod 16 8

2^4 mod 16 0
2^5 mod 16 0
2^6 mod 16 0
... ...

This desaster happens because 16 and the group element 4 have the factor 2 in common. In
conclusion, the modulus p has to be prime, in order to generate all numbers between 1 and p-1.

How to start a big computation

Before starting the big computation the last two parameters in ‘13,2,19,4,0,discretelog’ need to be
explained. The baby step, giant step algorithm uses a system with milestones. Milestones are
simply elements of the group (defined in the section “Difficult way round”) in a fixed distance
between them.

So in the first table milestones could be the bold ones: 2,4,8,16,13,7,14,9,17,15,11,3,6,12,5,10,1

Now the parameter 4 explains itself: this is the number of milestones the program creates.
The distance between the milestones is chose by the plugin itself; it is the square root of n, where
n is the modulus. You shouldn’t specify more than sqrt(n) milestones, or else the sorting algorithm
won’t work, because the algorithm generates duplicates and indexes are not powers of the
generator anymore. Our plugin checks this, and if the number is too big, it defaults to sqrt(n).

We can now imagine computations where the memory space of one machine is not enough to
contain all milestones. In fact, GPU normally doesn’t digest more than one million milestones.
The idea is to choose at random a starting point, in the big circle built by the elements of the
group, if they are ordered using the power function. The perimeter of the circle is named with real
numbers from 0 to 1. In other words we normalize the element index (that is a number between 1
and the order of the group) to a real number between 0 and 1.

‘0’ in ‘13,2,19,4,0,discretelog’ defines as starting point the first number in the table.
‘0.9999’ would define as starting point the last number in the table.

We now try the following packet
‘13,2,19,2,rnd,discretelog’. ‘rnd’ is a function that returns a random real number between 0 and 1.
By clicking on the ‘Compute locally’ many times, sometimes one finds the result 5, but sometimes
0. By working with only two milestones the program doesn’t always find the discrete logarithm and
returns 0.

Computing this packet ‘11412647538025,11,70383776563201,1000000,rnd,discretelog’ will take
about 10 minutes on a 1GHz machine (August 2002). Here we use one million milestones,
although seven million (sqrt(70383776563201)=7 million) are needed to cover the whole circle of
the huge cyclic group. So about 70 minutes are needed to solve the task.

Using rnd as parameter we get an easy way to parallelize the Baby step / gian step algorithm. By
sending the above packet to a small network of GPUs, they will start to generate from a random
starting point a part of the table needed to find out the discrete logarithm. Most of GPUs will
respond with a ‘0’ because they didn’t find the discrete logarithm. However, soon or later, a GPU
will generate a table that covers the discrete logarithm and will send back the correct result.

APPENDIX C
A computation over a known topology
WARNING: this functionality is implemented only up to version 0.688.
Imagine having five workstations available, where we can install the presented application, called
GPU, an acronym for Global Processing Unit. If you are a student, you can try to reserve some
workstations in the computer room. Between semesters many students are in holiday and the
computer rooms are mostly empty
We deactivate on all installed GPU’s the feature “Automatic connection management”, so that the
program doesn’t connect automatically to other workstations located somewhere outside the local
network. Now using the ‘Add’ button in the Monitor page of the GPUs, you can build a network
with the shape you want. E.g. you can build a circle, a star... Notice that a connection is two-way,
so you can add a connection from A to B, but later you can’t add one from B to A. Connections are
numbered in the way you add them. So in the picture below A-C was added before A –B. The
numbering is relative to the node, and corresponds to the order of the established connections list.

In the following example we decide to connect the five workstations as a tree. A tree is an efficient
topology, there are no loops where packets can multiply...

We sit in front of Workstation A, and we want our “complex” computation to be performed from
B,C,D and E. D computes 2 times 3, E computes 8 divided by 4, C multiplies the results of D and
E together, B computes 1 plus 1, and A finally adds the results from B and C.

It is possible to send out a job using the “sj” command. After the “sj” command, you can add “[2]”,
this means that the packet will be sent out only through the second connection. “123” is the
identifier that identifies the job.
Here the packet: {1,1,add},123,sj[2]

Now we can build up recursively the whole packet that has to be sent out from A.
{1,1,add},123,sj[2], {packet that has to be sent out from C},124, sj[1],first[123],first[124],add

The packet that has to be sent out from C becomes then
{2,3,mul},888,sj[1], {8,4,dvd},999,sj[2],first[888],first[999],mul

We can now compose the whole packet by composing the two strings above:
{1,1,add},123,sj[2], {{2,3,mul},888,sj[1], {8,4,dvd},999,sj[2],first[888],first[999],mul
},124, sj[1],first[123],first[124],add

If you type in that huge string in the computing page of GPU, you’ll get back the result 14.
As you can see, recursion is required to build up packets. We don’t have in this case a central
server that distributes jobs. In conclusion that system of differentiating jobs using recursion is in

A

B

C

D

E

1

2

2

1

1,1,add

2,3,mul

D,E,mul

8,4,dvd
B,C,add

my eyes pretty useless. The problem comes from the way the virtual machine computes and
distributes jobs. To solve the problem, we could think at a virtual machine that distributes tasks
numbering nodes and distributing them lists.

APPENDIX D: Application Screenshots

Computing page

Hosts page

References

[1] Qin Lv, Pei Cao, Edith Cohen, Kai Li and Scott Shenker.
Search and Replication in Unstructured Peer-to-Peer Networks. In
http://www.cs.princeton.edu/~qlv/download/searchp2p_full.pdf, University of Princeton, July 2002

[2] Mihajlo A. Jovanovic, Fred S. Annexstein, and Kenneth A. Berman.
Scalability issues in large peer-to-peer networks- a case study of gnutella. Technical Report
http://www.ececs.uc.edu/~mjovanov/Research/paper.html, University of Cincinnati, 2001

[3] Clip2.com. The gnutella protocol specification v0.4. In
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf, 2000

[4] Jordan Ritter. Why Gnutella can’t scale. No, really. In Preprint,
http://www.darkridge.com/~jpr5/doc/gnutella.html, 2001

[5] Kelly Truelove. Gnutella: Alive, well and changing fast. In Preprint,
http://www.openp2p.com/pub/a/p2p/2001/01/25/truelove0101.html, January 2001

[6] Seti@Home. The Search for Extraterrestrial Intelligence. In http://setiathome.berkeley.edu/,
University of Berkeley, 2000-2002

[7] United Devices. Project: Cancer Research. In http://members.ud.com/projects/cancer/about.htm,
2002

[8] Stephen Wolfram: Computer Software in Science and Mathematics. Scientific American, 251 188-
203. In http://www.stephenwolfram.com/publications/articles/general/84-computer/2/text.htm,
September 1984

[9] Andrew Wooster. Random Walkers for P2P searches.
http://www.nextthing.org/archive.php?NLNews%5Bpost_id%5D=4, 2002

[10] Open Directory Project. Napster. In
http://dmoz.org/Computers/Software/Internet/Clients/File_Sharing/Napster/, 2002

[11] Cap’n Bry. The GnutellaTrans Delphi component. In http://capnbry.net/gnutella/ss.php, 2000

[12] Wolfram Research. Pi Digits. In http://mathworld.wolfram.com/PiDigits.html, 2002

[13] GPU development team. GPU: a @lobal processing unit?? In http://sourceforge.net/projects/gpu,
August 2002

[14] delphi.about.com Introducing Borland Delphi. In
http://delphi.about.com/library/weekly/aa031202a.htm, 2001

[15] John M. Jacobson. Visual C++ versus Delphi. In http://home.xnet.com/~johnjac/Delphi%205%20vs%
20Visual%20C.htm, 2000

