PAPER on the PERSISTANT WIDE AREA DATABASE

February 16. 2007

As implemented by R.M. Tegel for the GPU Distributed computing over P2P networks project.

Initially i wanted to write this paper before implementing, however at this moment its just the other way around: the first beta of PWANDB has found its way to users running GPU nodes. And I'm glad about that, since all i will write next is no longer only theoretical talk, but can be tested in practice.

The idea of Persistent Variables initiated from my efforts to make a replacement for the Gnutella protocol – Pastella.

Although Pastella did work – more or less – i was not satisfied with it. Operating it, it was indeed network-efficient, but drained huge resources from CPU and system memory. Also, problems with node-to-node routing were still not solved, and it is untested how well Pastella scales. However, a few concepts from the Pastella network are re-used in PWANDB, and Pastella still can be used as Gnutella replacement.

PwanDB sets another goal – prove a principle. Minimal network load is no goal in itself. The current setup is layered, which means: separated modules can be replaced. So is the GPU Gnutella network used for real-time data transfers, but this can easily be replaced by any other (broadcasting) p2p network. Same for the database layer, its build on top of SQLite but nothing will stop a programmer from using another database system. The network interface protocols, both for human interaction and automised transfers, dito, they are designed to prove the concept, and not do not provide most user-convenient or network efficient use. But it works, and that's what matters.

About the concept:

Programmers and experience windows users will know it: the windows registry. This is a good example of a plain local database, using name-value pairs. The fact that it is tree-like does nothing to the fact that they are simple name-value pairs, any key can be written in a way to uniquely identify itself – so the name is unique.

PwanDB uses the same concept – with one tiny but significant modification: the database is not local but shared with all other nodes. Thus, all nodes share the same database. In fact, they hold all copies of an identical database. If the databases are not identical, nodes can synchronize to each other to make their database identical. 2 nodes synchronizing will mutually exchange data.

What if data collides? The idea is: it wont. First of all, any node can set any variable. However, any variable/value will also keep the meta data: which node created it. Effectively, a node will only set and alter its own data.

Second, data is timestamped. As soon as a value changes, a new timestamp is added. Synchronizing nodes can easily detect which data is most recent and should be kept, and which data can be discarded because an update is available.

Third, data from several nodes does co-exist next to each other. It's up to the final application to determinate which data he wants: Do it want the latest written value by any node, does it want a list with all values from all nodes, does it want it summed, averaged, randomized etc. etc.

So, the concept let itself model as multiple (endless) local databases, that are shared amongst other nodes. Another node will know how your local database looks, and vice versa.

Doesn't this lead to an unmaintainable data storage, that will easily grow beyond reasonable limit if enough nodes comes online? Yes, it does, and this is indeed issue. However, there are more issues, like limiting network traffic.

Instead of pull request (a requester asks information on nodes), the data is present on a PUSH base – a variable needs only be updated and shared with other hosts as it is modified. This means that repetitive queries are no longer necessary, let alone a hundred nodes all requesting the same information. The information is already there – in a locally synchronized database. If its not, you can assume the variable is not set.

Then, to take into consideration, with current computer technology, its no problem at all to have a local database of, say, 1 gigabyte. Now, a lot of information fits in one gigabyte. Like a million nodes can all store an average of 1 kilobyte of information. 1Kb does not sound like much, but it is. It is often more than enough to communicate essential information.

What the real limits are, and if/when/how scaling issues are solved, is yet do be discovered. However, there is no reason to believe such system cannot scale to thousands of nodes. In fact, since nodes can decide to synchronize with each other, the PwanDB network may in fact hold and transfer more data than a realtime broadcasting network like Gnutella may be able to. Quality of Service (QoS) may help to distinguish real-time and 'not bad if its bit delayed' data.

However, the concept did not originate due to scaling issues, network performance issues, protocol replacements etc. The concept originated from the view of a plugin developer. We experimented some distributed computing with GPU, with varying success. Like distributing a simple chess game over a p2p network is hard, since the requester wants some guarantee that all possible moves are considered, and doing a job double is waste of computing time. Randomness is no option here. Neither is a system like the terragen wrapper uses – a central ftp server. For a 'simple' chess board calculation, FTP transfers are way too much overhead, complicated, still have locking/distributing issues, and a central point of failure, and not the the last place the time-scale since ftp- or any third party transactions tend to be slow.

Plugins also often want instant information, and we already learned to live with information that is not complete (as distributed p2p developer you'll get used to that). However, ever the smallest piece of information, until now, had to be fetched from the GPU broadcasting network. Often repeated, to get the latest update or just to accumulate responses from all nodes (packet loss etc.).

In particular there is a problem if a job requester have, say, 10 distinctive jobs, that all need to be computed exactly once. Not less than once, and preferably also not more than once. Our chess is a good example of this, the set of possible moves is limited, but you want to have them examined all.

The job requester should be able to assign a particular job to a specific node*. If the node fails to accept the job in reasonable time, the initiator can choose to ask another node to do the job. (*Or vice-versa using some locking mechanism.)

However, before such mechanism even can work, the initiator needs to know information: which nodes do exist, are they available (online), do they have proper plugin installed, do they actually have time for the job and if, how long would it take (how fast is their processor) etc. Without this information, it is like a blind man asking to give each a piece of paper to 1000 people in a single room.

If this information however is all there, its like a person with a bar code scanner asking to hand a paper to 1000 people with all bar codes on their head and a pda in his hand to keep track of the administration. Agreed, the programmer still have works to do, like writing bar codes and a bar code scanner, but at least its possible.

Though, how complex the job might be, it will consist of queries to a locally hosted database – meaning (almost) instant data retrieval.

The current protocol

I'll limit myself to discussing the tcp/ip protocol as used by pwandb at this moment, and suffice to say that there is also an udp based protocol, and that i target writing interfaces for named pipes (windows) and unix sockets.

The tcp/ip protocol is omniversal, i.e. No distinction is made between master and slave – both parties speak identical language. Also, the current implementation not only serves as synchronisation between nodes, but also as interaction with humans. For safety purposes, the 'flexible' human-friendly protocol only works if a connection is initiated from localhost. This at least makes a hacker use a sophisticated (if not full) implementation of the protocol before this hacker is able to insert ''fake'' data. But, in its current setup, not impossible. However, openness of the network is more important to me than a single spammer. If such thing happens, we will have methods to block such abuse from our network.

When 2 nodes connect, they will exchange their node id. After this has happened, synchronization takes place. This synchronization is done by sending checksums. Each node can verify if a checksum matches an already existing variable. If it does, there is no need to retrieve it from the other node. If it don't, the other node is simply asked to send the variable belonging to this checksum.

Commands are line-based and start with a special character, to determinate the type of command/line sent. This allows several (line-based) formats to co-exist to each other, with very little overhead.

For user-interaction from localhost, the protocol is more friendly. If a line starts with a character 'a'-'z', the node assumes a user is just specifying a variable name. Other parameters (like timestamp etc.) will be defaulted.

For example, if a user types

help

The node will look for a variable named ''help'' and send the latest inserted value for that variable.

If a user types

a=10

the node will set the value of variable a to 10. As simple as that it is. In the background, this information is shared to other hosts.

Lets assume both nodes are online on the GPU network. If user A sets a variable, user B can read the variable, y using exactly the same name:

A: a=10

B: a

User B will read 10.

If user B sets he variable:

B: a=20

then user A will retrieve 20 when fetching the value.

Is the value as set by user A overwritten? NO! It still is there.

If user A uses the wildcard (%) preceding a variable name, it will see all variables that matches that name:

%a

will read: 10 form node A, 20 from node B etc. It will also show the values of variables ape, area and another_test, if present of course.

Therefore, naming conventions are important, and its the next thing on the to-design list.

The implementation is far from complete, on short term i want some basic mathematics (already implemented on database level, just not in the tcp/ip protocol) to, for example, sum and average the data (next examples not yet working)

$sum a

will read: 30 if only user A and B set variable a, and

$avg a

will read 15. etc.

$list

If the concept is not flawed and if not, if it has potentional, we will only know after the first plugins using pwandb have been developed.

However, some problems seem solved: ad-hoc connecting and disconnecting nodes are no problem for synchronisation, realtime data is also immediately available due to the dual transfer setup (RT data from the Gnutella network, relayed but full synchronisation from node-node connections (''p2p'').

I'm glad the first beta works without problems (no hard crashes, circular packets etc. etc.) and does about what it was designed to do. Seen from birds-eye point of view, none of the used techniques are new or inventive, it is the combination of, and especially the context (distributed computing) that makes pwandb relevant.

Flaws

Of course there are. There is currently one design flaw that may have more or less serious impact: its not possible to delete (unset) variables. A node can assign an empty value to it, but it cannot delete it. The only way to keep track of deleted variables would be to list those deleted variables in another variable (...) thereby in fact doubling the problem.. Any other way (like simply deleting it from nodes) would not be consistent. A node that was disconnected at the time of deleting would just pop up and say 'hey, you didn't knew this variable yet? Here it comes...'.

An option would be a system where a node gets i limited (guaranteed) space to store variable data. Once exceeded, nodes are free to ignore more data. However this would still take overhead. On the other hand, it is feasible to build in some load-per-node detection and exclude such node's data from the synchronizing sequence, so excessive node data not necessarily leads to network abuse.

Authentication is another issue. A node can claim to be something, but to make really sure a node should sign its presence using some private/public key pair, and allow its communication partner to validate its existence by providing this public key. However, at some point this node must be added as '' trusted'' node. Since all this is way to complex for an open network (imho), we deliver on data reliability, since at this stage a node cannot prove that a variable is really its own. However, in its current setup identification stealing is as simple as editing a value in a database with sqlite browser, or adjusting the source. Setting the public nodeid variable manually is also possible, definitively leading to inconsistencies with -untested so far- behaviour.

This leads to next point

Actual safety issues running the current beta software:

Although open protocol and effort, i did some little effort to keep out scriptkiddies and other abuse. Connections coming from localhost only are allowed for human data manipulation. External connections must fully implement the protocol and its checksums etc. in order to update data. Besides, spammers don't need to break the protocol in order to spam, they just can run a node and conveniently insert their data.

It is not expected that sql injection or access to the underlying system is possible due to current protocol implementation, although indirect effects cannot be excluded. Data inconsistency can be achieved probably, although unlikely.

Does it obsolete GPU and Gnutella

No, on contrary. It needs a p2p network like Gnutella to work as intended, and the GPU pluggable framework is just fine. Its symbioses, and adds a new layer of data communication.

Possible applications:

The GPU GUI could store its icons and other artwork in the database (...)

Kind regards, now let me get back to my game before i get overworked ;p

